Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338764

RESUMO

The kallikrein-kinin system is a versatile regulatory network implicated in various biological processes encompassing inflammation, nociception, blood pressure control, and central nervous system functions. Its physiological impact is mediated through G-protein-coupled transmembrane receptors, specifically the B1 and B2 receptors. Dopamine, a key catecholamine neurotransmitter widely distributed in the CNS, plays a crucial role in diverse physiological functions including motricity, reward, anxiety, fear, feeding, sleep, and arousal. Notably, the potential physical interaction between bradykinin and dopaminergic receptors has been previously documented. In this study, we aimed to explore whether B2R modulation in catecholaminergic neurons influences the dopaminergic pathway, impacting behavioral, metabolic, and motor aspects in both male and female mice. B2R ablation in tyrosine hydroxylase cells reduced the body weight and lean mass without affecting body adiposity, substrate oxidation, locomotor activity, glucose tolerance, or insulin sensitivity in mice. Moreover, a B2R deficiency in TH cells did not alter anxiety levels, exercise performance, or motor coordination in female and male mice. The concentrations of monoamines and their metabolites in the substantia nigra and cortex region were not affected in knockout mice. In essence, B2R deletion in TH cells selectively influenced the body weight and composition, leaving the behavioral and motor aspects largely unaffected.


Assuntos
Receptor B2 da Bradicinina , Tirosina 3-Mono-Oxigenase , Camundongos , Masculino , Feminino , Animais , Receptor B2 da Bradicinina/genética , Receptor B2 da Bradicinina/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Bradicinina/farmacologia , Receptor B1 da Bradicinina/metabolismo , Peso Corporal , Camundongos Knockout
2.
Neurobiol Stress ; 28: 100587, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38075022

RESUMO

Anxiety, a state related to anticipatory fear, can be adaptive in the face of environmental threats or stressors. However, anxiety can also become persistent and manifest as anxiety- and stress-related disorders, such as generalized anxiety or post-traumatic stress disorder (PTSD). In rodents, systemic administration of glucocorticoids (GCs) or short-term restraint stress induces anxiety-like behaviors and dendritic branching within the basolateral complex of the amygdala (BLA) ten days later. Additionally, increased arousal-related memory retention mediated by elevated GCs requires concomitant noradrenaline (NE) signaling, both acting in the BLA. It is unknown whether GCs and NE play a role in the delayed acute stress-induced effects on behavior and BLA dendritic plasticity. Here, inhibiting corticosterone (CORT) elevation during 2 h of restraint stress prevents stress-induced increases in delayed anxiety-like behavior and BLA dendritic spine density in rats. Also, we show that the delayed acute stress-induced effects on behavior and morphological alterations are critically dependent on genomic glucocorticoid receptor (GR) actions in the BLA. Unlike CORT, the pharmacological enhancement of NE signaling in the BLA was insufficient to drive delayed anxiety-related behavior. Nonetheless, the delayed anxiety-like behavior ten days after acute stress requires NE signaling in the BLA during stress exposure. Therefore, we define the essential roles of two stress-related hormones for the late stress consequences, acting at two separate times: CORT, via GR, immediately during stress, and NE, via beta-adrenoceptors, during the expression of delayed anxiety.

3.
Neuroscience ; 502: 91-106, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35934251

RESUMO

Parkinson's Disease (PD) is a neurogenerative disorder characterized by the death of dopaminergic neurons in the Substantia Nigra pars compacta (SNpc), leading to motor, cognitive, learning, and respiratory dysfunctions. New evidence revealed that breathing impairment in PD mainly results from oxidative stress (OS) that initiates apoptotic signaling in respiratory neurons. Here, we investigated the role of OS inhibition using apocynin (non-specific NADPH oxidase inhibitor) in a 6-OHDA PD animal model in the neural control of breathing. The PD model was confirmed with a 70% reduction in TH-expressing neurons within the SNpc. After 20 and 40 days of PD induction, no differences were observed in superoxide anion levels in any respiratory nuclei. At 30 days after PD induction, 6-OHDA animals presented OS that was prevented in all respiratory nuclei by adding apocynin to the drinking water for 10 days. Forty days after PD animal model induction, impaired motor and breathing function, reduced Phox2b and NK1 receptors-expressing neurons in the medullary respiratory areas; decreased latency to fall in the rotarod motor test; and attenuated respiratory frequency and minute ventilation parameters at rest and under hypercapnia conditions were observed. After 20 days of apocynin treatment, neurodegeneration of respiratory nuclei and breathing dysfunction in 6-OHDA animals were prevented. Thus, OS contributes to respiratory neuron death, consequently leading to breathing dysfunction in the 6-OHDA PD animal model. Furthermore, these results present a new perspective for preventing the onset and progression of PD-related respiratory impairments.


Assuntos
Água Potável , Doença de Parkinson , Animais , Oxidopamina/toxicidade , Superóxidos , Neurônios Dopaminérgicos , Modelos Animais de Doenças , NADPH Oxidases , Estresse Oxidativo , Substância Negra
4.
Br J Pharmacol ; 179(8): 1640-1660, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34076891

RESUMO

Depression and anxiety commonly occur in chronic pain states and the coexistence of these diseases worsens outcomes for both disorders and may reduce treatment adherence and response. Despite the advances in the knowledge of chronic pain mechanisms, pharmacological treatment is still unsatisfactory. Research based on exposure to environmental enrichment is currently under investigation and seems to offer a promising low-cost strategy with no side effects. In this review, we discuss the role of inflammation as a major biological substrate and aetiological factor of chronic pain and depression/anxiety and report a collection of preclinical evidence of the effects and mechanisms of environmental enrichment. As microglia participates in the development of both conditions, we also discuss microglia as a potential target underlying the beneficial actions of environmental enrichment in chronic pain and comorbid depression/anxiety. We also discuss how alternative interventions under clinical guidelines, such as environmental enrichment, may improve treatment compliance and patient outcomes. LINKED ARTICLES: This article is part of a themed issue on Building Bridges in Neuropharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.8/issuetoc.


Assuntos
Dor Crônica , Transtornos de Ansiedade/terapia , Dor Crônica/tratamento farmacológico , Depressão/tratamento farmacológico , Humanos , Doenças Neuroinflamatórias , Neurofarmacologia
5.
Mol Neurobiol ; 58(10): 4871-4885, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34213722

RESUMO

The stress response is multifactorial and enrolls circuitries to build a coordinated reaction, leading to behavioral, endocrine, and autonomic changes. These changes are mainly related to the hypothalamus-pituitary-adrenal (HPA) axis activation and the organism's integrity. However, when self-regulation is ineffective, stress becomes harmful and predisposes the organism to pathologies. The chronic unpredictable stress (CUS) is a widely used experimental model since it induces physiological and behavioral changes and better mimics the stressors variability encountered in daily life. Corticotropin-releasing factor (CRF) and glucocorticoids (GCs) are deeply implicated in the CUS-induced physiological and behavioral changes. Nonetheless, the CUS modulation of CRF receptors and GR and the norepinephrine role in extra-hypothalamic brain areas were not well explored. Here, we show that 14 days of CUS induced a long-lasting HPA axis hyperactivity evidenced by plasmatic corticosterone increase and adrenal gland hypertrophy, which was dependent on both GCs and NE release induced by each stress session. CUS also increased CRF2 mRNA expression and GR protein levels in fundamental brain structures related to HPA regulation and behavior, such as the lateral septal nucleus intermedia part (LSI), ventromedial hypothalamic nucleus (VMH), and central nucleus of the amygdala (CeA). We also showed that NE participates in the CUS-induced increase in CRF2 and GR levels in the LSI, reinforcing the locus coeruleus (LC) involvement in the HPA axis modulation. Despite the CUS-induced molecular changes in essential areas related to anxiety-like behavior, this phenotype was not observed in CUS animals 24 h after the last stress session.


Assuntos
Encéfalo/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Receptores de Glucocorticoides/metabolismo , Estresse Psicológico/metabolismo , Animais , Doença Crônica , Glucocorticoides/metabolismo , Masculino , Norepinefrina/metabolismo , Ratos , Ratos Wistar , Estresse Psicológico/psicologia
6.
Br J Pharmacol, v. 179, n. 8, p. 1640-1660, jun 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3819

RESUMO

Depression and anxiety commonly occur in chronic pain states, and the co-existence of these diseases worsen outcomes for both disorders and may reduce treatment adherence and response. Despite the advances in the knowledge of chronic pain mechanisms, pharmacological treatment is still unsatisfactory. Research based on exposure to environmental enrichment (EE) is currently under investigation and seems to offer a promising low-cost strategy with no side effects. In this review, we discuss the role of inflammation as a major biological substrate and aetiological factor of chronic pain and depression/anxiety and report a collection of preclinical evidence of the effects and mechanisms of EE. As microglia participates in the development of both conditions, we also discuss microglia as a potential target underlying the beneficial actions of EE in chronic pain and comorbid depression/anxiety. We also discuss how alternative interventions in clinical guidelines, such as EE, may improve treatment compliance and patient outcomes.

7.
Sci Rep ; 9(1): 6673, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31040362

RESUMO

Multiple sclerosis (MS) is an autoimmune and neuroinflammatory disease characterized by demyelination of the Central Nervous System. Immune cells activation and release of pro-inflammatory cytokines play a crucial role in the disease modulation, decisively contributing to the neurodegeneration observed in MS and the experimental autoimmune encephalomyelitis (EAE), the widely used MS animal model. Synthetic glucocorticoids, commonly used to treat the MS attacks, have controversial effects on neuroinflammation and cognition. We sought to verify the influence of dexamethasone (DEX) on the EAE progression and on EAE-induced cognitive deficits. In myelin oligodendrocyte glycoprotein peptide (MOG35-55)-induced EAE female mice, treated once with DEX (50 mg/kg) or not, on the day of immunization, DEX decreased EAE-induced motor clinical scores, infiltrating cells in the spinal cord and delayed serum corticosterone peak. At the asymptomatic phase (8-day post-immunization), DEX did not protected from the EAE-induced memory consolidation deficits, which were accompanied by increased glucocorticoid receptor (GR) activity and decreased EGR-1 expression in the hippocampus. Blunting hippocampal GR genomic activation with DnGR vectors prevented DEX effects on EAE-induced memory impairment. These data suggest that, although DEX improves clinical signs, it decreases cognitive and memory capacity by diminishing neuronal activity and potentiating some aspects of neuroinflammation in EAE.


Assuntos
Anti-Inflamatórios/administração & dosagem , Dexametasona/administração & dosagem , Encefalomielite Autoimune Experimental/complicações , Encefalomielite Autoimune Experimental/tratamento farmacológico , Aprendizagem/efeitos dos fármacos , Memória/efeitos dos fármacos , Transtornos Motores/etiologia , Transtornos Motores/prevenção & controle , Animais , Anti-Inflamatórios/farmacocinética , Corticosterona/sangue , Dexametasona/farmacocinética , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/diagnóstico , Imunofluorescência , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos , Camundongos Endogâmicos C57BL , Transtornos Motores/fisiopatologia , Esclerose Múltipla/complicações , Esclerose Múltipla/tratamento farmacológico , Receptores de Glucocorticoides/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia
8.
Neuropharmacology ; 113(Pt A): 457-466, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27815155

RESUMO

Environmental enrichment (EE) is an experimental animal model that enhances an animal's opportunity to interact with sensory, motor, and social stimuli, compared to standard laboratory conditions. A prominent benefit of EE is the reduction of stress-induced anxiety. The relationship between stress and the onset of anxiety-like behavior has been widely investigated in experimental research, showing a clear correlation with structural changes in the hippocampus and basolateral amygdala (BLA). However, the mechanisms by which EE exerts its protective roles in stress and anxiety remain unclear, and it is not known whether EE reduces the effects of acute stress on animal behavior shortly following the cessation of stress. We found that EE can prevent the emergence of anxiety-like symptoms in rats measured immediately after acute restraint stress (1 h) and this effect is not due to changes in systemic release of corticosterone. Rather, we found that stress promotes a rapid increase in the nuclear translocation of glucocorticoid receptor (GR) in the BLA, an effect prevented by previous EE exposure. Furthermore, we observed a reduction of ERK (a MAPK protein) and CREB activity in the BLA promoted by both EE and acute stress. Finally, we found that EE decreases the expression of the immediate-early gene EGR-1 in the BLA, indicating a possible reduction of neuronal activity in this region. Hyperactivity of BLA neurons has been reported to accompany anxiety-like behavior and changes in this process may be one of the mechanism by which EE exerts its protective effects against stress-induced anxiety.


Assuntos
Ansiedade/metabolismo , Complexo Nuclear Basolateral da Amígdala/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Meio Ambiente , Sistema de Sinalização das MAP Quinases/fisiologia , Receptores de Glucocorticoides/fisiologia , Estresse Psicológico/metabolismo , Animais , Ansiedade/genética , Ansiedade/prevenção & controle , Proteína 1 de Resposta de Crescimento Precoce/biossíntese , Proteína 1 de Resposta de Crescimento Precoce/genética , Genes Precoces/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Distribuição Aleatória , Ratos , Ratos Wistar , Estresse Psicológico/genética
9.
Brain Res ; 1421: 30-43, 2011 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-21963314

RESUMO

The medial amygdaloid nucleus (Me) integrates pheromonal and olfactory information with gonadal hormone cues, being implicated in social behaviors. It is divided cytoarchitectonically in an anterodorsal, anteroventral (MeAV), posterodorsal and posteroventral part, whose projections are well characterized, except for those of the tiny MeAV. Here, MeAV efferents were examined in the rat with the anterograde Phaseolus vulgaris leucoagglutinin (PHA-L) and retrograde Fluoro-Gold (FG) tracers and compared with those of other Me parts. The present PHA-L observations show that the MeAV projects profusely to itself, but its projections to other Me parts are modest. In conjunction with FG experiments, they suggest that the MeAV innervates robustly a restricted set of structures it shares with the anterodorsal and/or posteroventral Me. Its major targets are the core of the ventromedial hypothalamic nucleus (especially the dorsomedial and central parts), reached mainly via the stria terminalis, and the amygdalostriatal transition area. In addition, the MeAV innervates substantially the lateral and posterior basomedial amygdaloid nuclei and the intraamygdaloid bed nucleus of the stria terminalis. In contrast to other Me parts, it provides only modest inputs to the main and accessory olfactory systems, medial bed nucleus of the stria terminalis and reproductive hypothalamic nuclei. This anatomical framework suggests that the MeAV may play a role in orienting responses to chemosensory cues and defensive behaviors elicited by the odor of predators.


Assuntos
Tonsila do Cerebelo/anatomia & histologia , Vias Neurais/anatomia & histologia , Animais , Feminino , Imuno-Histoquímica , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...